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1.     Introduction 

In simple terms there are  two ways of fighting wildland fires:     (i)  directly 

attacking the combustion with water,  borate bombs,  or other extinguishers,   (ii) 

indirectly  constructing firebreaks which consists essentially in removing  fuel 

along  certain paths of some width which circumscribe  the  fire so as to stop   further 

spread.     The  first method is  effective for early suppression of the development of 

a wildland  fire, while the second  is generally required  for well developed   fires of 

large magnitude.    We are concerned here with the optimal  construction of firebreaks. 

Aside  from the greater importance of constructing firebreaks since they apply 

to larger  fires,  the model of this method of  fire fighting lends itself more easily 

to an evaluation and interpretation of the parameters  involved,  particularly when 

some  of them are random variables,  as compared with a model for direct  suppression. 

Further,   it  is easier to describe  free burning fire spread models  for the study of 

optimal  firebreaks. 

2.     Simplifying Assumptions 

First we shall assume that  the fuel for wildland  fires is distributed  uniformly 

on a  flat  plane.    This  assumption is obviously an idealization of  the real  situation, 

but it may be possible to develop,   in an approximate way,  projections of wildlands on 

a plane  so that equal distances  in the direction of  the climatological mean wind 

vector imply equal travel times  for a free burning  fire,  allowing for the greater 

rate of  travel of a fire up  slopes as against  the velocity of spread down slopes and 

also  for variations in  fuel distribution.    Another way of  interpreting  this  assump- 

tion in the  real situation is  to  regard the idealized velocity of  fire  spread  in the 

flat  plane as  an average velocity   for the actual wildlands.     In any event one  cannot 

take  account of every tree,  bush,   stream,  rock,  and slope. 



Next,  regarding fire spread models in the plane for free burning fires,  the 

fire front  in still air is assumed to propagate radially with constant velocity as 

illustrated in Figure 1.     If a mean wind vector is superimposed, the movement of the 

fire front  is assumed to be modified by the addition of a fixed velocity vector for 

the center of the fire in the direction of the mean wind,   resulting in a fire  front 

spread as  illustrated in Figure 2.     Generally, the rate of propagation in still air 

is small relative to the wind effect and the contours of  fire spread in the presence 

of wind will be long and narrow,  suggesting an approximation in the form of a plane 

wave front moving with constant velocity in a channel of fixed width    L    as  illus- 

trated in Figure 3. 

The details of analysis presented in this paper will be restricted to the 

deterministic plane wave fire spread model of Figure 3. 

A study of optimal strategies  for firebreaks  related to the fire spread models 

of both Figures 2 and 3, with wind treated as a random variable, will be reported in 

a doctoral thesis of one of the authors of this paper,  to be published later.     There 

a periodic review policy is used  for optimal construction of firebreaks, using 

dynamic programming to determine the sequential alteration of the optimal firebreak 

paths for arbitrary sequence of  realized values of the randomly varying wind. 

3.    Method of Constructing Firebreaks 

Men with hand tools and portable equipment are used  to construct a firebreak. 

A total crew of    N    men is split  into    n    equal groups  and each of these groups 

constructs one    nth    of the firebreak.     For    n    even or odd,  the firebreak sections 

are  laid out  symmetrically in a continuous path as illustrated in Figures 4 and 5. 

Starting at  points    P    a section of the firebreak is  constructed to a point    Q  . 

Thus  the   fire may be subdivided  into    n    contiguous plane wave fires,  and we need 

on ly study  for given total  crew size    N    and number of  construction groups    n    the 

optimal  firebreak path for a plane wave  fire of width    — .     With these optimal paths. 
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FIGURE  1.     FIRE  SPREAD  IN  STILL AIR 

FIGURE  2.     FIRE SPREAD MODIFIED  BY WIND VECTOR 
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FIGURE 3.  PLANE WAVE FIRE SPREAD 



depending upon N and n , one may determine crew size and group size so as to 

minimize the resulting total costs.  For this analysis it is assumed that the time 

required to distribute the fire fighters along a working line is negligible. 

4.  Cost Structure 

The cost structure proposed by Parks and Jewell  [4]  is used.  It includes 

the following four types of cost: 

(i)   A fixed cost associated with maintaining a fire fighting organiza- 

tion and setting it into action at the time of a fire, denoted by 

C   (in dollars). 
F 

(ii)  A cost proportional to the crew size N used, including items such 

as transportation, and other "one-shot" logistic support costs, 

denoted by C '^ where C  is dollars per man. 

(iii) A cost proportional to the total number of man hours used In 

constructing firebreaks, denoted by C 'N'T  where C  is dollars 0 ' ^      m        c m 

per man hour and    T      is  time of control, 

(iv)      A cost measuring the fire damage which is proportional to the area 

burnt,  denoted by    C   'A    where    C_    is dollars per acre and    A    is 
D D 

the total area burnt. 

In these terms the total cost K for any fire attacked by a crew of size N 

is given by 

(1) K = C,, + C -N + C -N-T + C -A  . 
F   S     m   c   B 

Although not explicity indicated in  (1) , the total cost depends upon the path 

chosen for the firebreak and the number of construction groups n , via the quantities 

T  and A .  In order to see this we need to consider details on extremal firebreak 
c 

paths for a plane wave fire of width — . r r n 
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FIGURE A.     SECTIONALIZED FIREBREAK FOR    n - 4 
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FIGURE  5.     SECTIONALIZED FIREBREAK FOR    n - 3 



5.  Extremal Firebreak Paths (Given N And n) 

Define the firebreak path by a real, nonnegative single valued function 

x ■ f(y) , denoting the distance of the firebreak from the initial position of the 

fire front for all values of y in the interval [0 , —] .  In particular 

f(0) = x0 > 0  (See Figure 6). 

For some nominal width W of the firebreak, let A denote the firebreak area 

constructed per man per unit time.  Then the ratio A/W determines the velocity 

V  of firebreak construction per man used. m r 

The position of the fire front at any time t is given by 

(2) xf(t) - Vf-t 

where V  denotes the constant velocity of movement of the fire front and the 

origin of time is chosen so that t = 0 corresponds to th' initial position of the 

fire front, i.e., xf(0) ■ 0 . 

Denote by T(y) the time at which the fire construction group reaches the 

point (f(y) , y) . Then 

(3) T(y) ^- y U + (f,(u))2]1'ä-du 

Vn) 0 

and the time of control T ■ Tr-I is given by 

L/n 
T 7^7 f   f1 + (f'(u))'P-du c   v ß\ L m^ 

Thus, the cost function (1)  lepends upon the firebreak path f(y) and the 

number of construction groups n as well as the total crew size N .  Similarly, 

the last term of  (1) depends upon n and an integral of f(y) . 
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FIGURE 6.  GEOMETRY OF PLANE WAVE FIREBREAK 



At any time t during the construction of the firebreak, the fire front 

cannot pass over the firebreak path f(y) .  Hence admissible firebreak paths f(y) 

are restricted to satisfy the constraints. 

V    ■> 
(4)       fW   ± "~7i7V / t1 + (f,(u))2]if-du V y t   [0   ,h 

V -) Jn m\n/  0 

In these variables the total cost function (1) becomes 

L/n 

v(-) m\n/ 

C -N    t 

K[f(y) ; n , N] = CF + Cg-N + -fj^--        A [1 + (f' (y))']'2-dy 

^0 

(5) 
L/n 

/ 
+ CB-n I     f(y)dy 

0 

and extremal firebreaks are defined by those paths  f(y)  satisfying (4) which 

yield 

,,. Min K[f(y) ; N , n] ^ 
(b) f(y) 

for given N , n . 

6. The Optimization Procedure 

For arbitrary positive crew size N and number of construction groups n , 

extremal firebreak paths are determined by the constrained variational problem (6) , 

in which the endpoints are variable on the boundaries of the plane wave fire front. 

In this minimization, the extremal firebreak paths may either follow the fire 

front, be removed from the fire front, or be a mixture of these two possibilities. 

Having determined the optimal firebreak path as a function of N and n , 

this function is substituted into  (5)  to obtain the t * 1 cost as a function of 
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N and n , and the resulting cost function is then minimized with respect to the 

number of construction groups and total crew size. 

Thus an optimal strategy is one which minimizes cost rel. tive to crew size, 

number of groups, and firebreak path. 

7.  Optimal Firebreak for Given N and n 

It is convenient to state certain general propositions concerning the extremal 

firebreak paths before undertaking the variational problem (6) . 

Proposition 1; An extremal firebreak path may follow the fire front if and only 

if 

V 
m 0 

Proposition 2;  If —-rr- < 1 and the Initial endpoint of the extremal firebreak 

m\n/ 

path satisfies f(0) * XQ = 0 , then the extremal path entirely follows the fire 

front.  If —rrrr >  1   , there is no feasible control with this endpoint stipulation, 

m\ n ' 

Corollary; An extremal firebreak path is a straight line follow-the-fire 

front path starting from any value of y where fire front and firebreak meet on 

the extremal path. 

These two propositions are required as preliminaries, because the standard 

variational proredures do not apply for a straight line follow-the-fire front path 

which permits only one sided variations. 

With these preliminaries, there are evidently two parameter situations to be 

considered for extremal firebreak paths, 
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m\n/ 

(b) P = —kr < l 

Mnj 

Case (a):  p > 1 

Here, following the fire front is not admissible, which suggests that the 

constraints  (4)  may be simplified to 

(7) f    p N/I + f'(y)2 - f'Cy) -f^jdy - 0 

In fact, define 

y 

(8) G(y) = f(y) - pM + f'(r)2dr 

0 

and 

(9) GMy) - f'Cy) - P ^1 + f'Cy)2 . 

If p > 1 , G'Cy) < 0 for all y e [0 , -] and the separation between men and fire 

front is a strictly decreasing function of y .  Thus, condition (7)  is a sufficient 

equality replacing  (4) , which is also obviously satisfied when f(y)  is optimal. 

Hence in this case we may formulate the variational problem as follows:  Define 

yi 

(10) J(f(y)) - jfjUy , f(y) , f'(y)) - ^ ^ { dy 

yo 
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where    yo " 0  ,  yj  = - ,   U0    is a multiplier and 

11   A+f (y)2 + C„nf(y)  + Un[p A+f'Cy)2 - f (11)       L(y,f(y),f'(y))  =-^-^l+f'(y)' + C^nfiy) + UQEP Vl+f (y)" - f (y) ] 
m 

Let    J(f(y))    have an extremura for    f(y)     and  consider variations of    f(y)    defined 

by     f(y) + h(y)   , where  it  is assumed that     f(y)     and    h(y)     are continuous and 

differentiable in     [0   , —]   .    As boundary conditions we apply    6xi   ■ My^)   , 

öXQ  
= MXQ)   »  allowing the endpoints to vary on the lines    y = yo   »  y ^ yi    as 

illustrated in Figure 7.     For arbitrary    h(y)     the increment in    J(f(y))    is given 

by 

yi 

AJ(f(y))  - y |L(y.f(y)  + h(y),f (y)  + h'(y))  -       ^"^ [f (yp)  + 6xo) ] j dy 

yo 

yi 

- y;L(y,f(y).f(y))  ^L-^f (y0) |dy 

yo 

and the corresponding variation    6J    is 

yi 
{J " /'Lf(y) " ^ Lf(y) ! hW + Lf(y)yiyi

,6x> 

-    V(y)   I       +U» 
y=yo 

6xf 

where h(y)   ,   6xi     and    6XQ    are arbitrary.     Hence,  as necessary conditions  for 

f(y)     to minimize    J(f(y))    we have 

(12) Lf(y) -^"'fCy) =0 

(13) Lf,(y)    |     + U0  =  0 

y=yo 
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yi 

yo 

xj + 6x1 

xo XQ + 6xo 

FIGURE 7.  FIREBREAK VARIATIONS  (p > 1) 
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(14) Lf,(y) I  =0 

y-yi 

Equation (12)  Is the standard Euler equation, while  (13)  and (14)  are 

transversality conditions for the variable endpoints. 

Now, using the definition of L(y , f(y) , f^y)) , we obtain from (12) 

(12.1) f,W  7 = a(U0)-y + ß 
/l + f^y) 

where ß is a constant of Integration and 

CB 
(15) a(Uo) -  

m 

Equation  (13)  becomes 

(13.1) f'^0^  ? = 0 => f^O) = 0 
y 1 + f^O)^ 

and ß = 0 .  Equation  (1A)  states 

/C n    \   f'(^l 
(1A.1) -|-+ pUo z'  U0 

n 

and using  (12.1)  with ß = 0 one obtains 

(16) UQ = CB-L 

and 

cB 
(17) »(UQ) = a0 = 

C T 

T +  pCBn 
m 



Therefore the extremal firebreak path for case (a) is given by 
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(18) x    =  f(y)   = x0 + 7" I1 - Vl "  (aoy)   I 

where    XQ  = f(0)   .    This  last  equation may be written 

[xTn- (xo+^)]  +y = — 
»0 

to show that the optimal firebreak path for given n , N is a circular arc with 

center  (XQ + — , 0)  and radius — , as illustrated in Figure 8. 

The initial coordinate XQ  is determined, from substitution of  (18)  into 

(7) , to be 

(19) u       an Vn/an' \n/ 

üQL 

The quantity         is  less  than unity,  since    P   >   1    for case  (a)   and    aoy  <  1 

for all    y e   [0  , —]   .     Thus we have a complete solution for the extremal  firebreak 

path. 

One  final remark:     the  cost   function     (5)     is  convex in    f(y)     and     f'(y)   , 

and the necessary  conditions     (12)   ,   (13)   ,   (1A)     are sufficient  for the deter- 

mination of the optimal  firebreak path  for any given positive values of    N    and    n  . 

Case  (b):     p  <  1 

In this case it is possible for the firebreak to follow the fire front 

starting from any value of y e [0 , —]  (see Proposition 2 and the corollary 

following) and, in order to investigate the composite paths which may occur, let 

(20) 

y 

y = Min y 3 f(y) = p /v1 + f'(r)2dr 
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FIGURES.     EXTREMAL FIREBREAK     (p   >   1) 
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Then for    ye   [0  , —]     the varlational problem for extremal  firebreaks over the 

interval     [0  ,  y]     is one which minimizes     (5)     with    (—I    in the upper integral 

limits replaced by    y  .    As in case  (a)  we shall replace the constraints    (4)    by 

(7.1) f   p A + f'Cy)2 - f'(y)  +^i   = 0 

and show that the solution satisfies  (4)  for all values of y e [0 , y] . The 

complete path of the optimal firebreak consists of this solution and a straight line 

with initial point  (f(y) , y) and slope p/vi - p ■ T~ • 

Hence for case (b) we use the definition  (11) for L(y , f(y) , f^y)) and 

formulate the varlational problem as follows:  Define 

9r{ ) 
(f(y)) -/jL(y • f(y> • f,(y>> "iI(f^)' dy 

yo 

(21) 

C n (y! - y) on Kyi  - yj i 7 
+ ~V" /    2    +Sn h(yi ■ 5° + h(yl  - V     TH 

m v1 - p      ( vl-p 

taking a firebreak path  f(y)  for y e [0 , y]  and a straight line follow-the-fire- 

front path for y c [y , yi] , where yo " 0 i Yi " ~ . y e [0 . "1  and u0 is a 

multiplier.  Let J(f(y))  have an extremum for f(y) (y e [0 , y])  and consider 

variations of  f(y)  defined by f(y) + h(y) , where it is assumed that f(y)  and 

h(y)  are continuous and differentiable in  [0 , y] .  The boundary conditions are 

6x0 - h(yo) 

5ji - ■     P  . .6y « h(y) 
VI - p 
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Pl + APl 

x0 x0 + 6xo 

FIGURE 9.     FIREBREAK VARIATIONS     (p   <  1) 
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using a general variation  (6x , 6y)  at the endpoint  (f(x) , y)  as illustrated 

in Figure 9.  Then for arbitrary h(y)  the increment in J(f(y))  is given by 

y+6y 

AJ(f(y)) = I     JL(y,f(y)+h(y),f(y)+h'(y)) - ^^^-[f (yoKfixp] jdy 

yo 

-y {L(y.f(y).f'(y)) - j^j Hy^y 
yo 

Cmn  1   l ) 
+ -rr / 'x (yi-y-öy) - (yi-y) 

m Vl-p  ' ' 

,,,    .(*+6x)(yi-y-6y) + 4(yi-y-6y)   -7=^- *(yi-y)  " ^(yi-y)   -T-^ 
B     ( v/l-p2 N/I-P

Z
| 

and  >he corresponding variation    6J    is 

6J = ■/jLf(y)-tLf(y>jhWd'' 
yo 

Lf,(y)  '   + uo (^o +|cB
n(yi"y) + Lf,(y)   I  T* 

y"yo      ) ( y-y) 

where h(y) , SXQ , 6x and 6y are arbitrary.  This problem is one of Bolza type 

[1] .  Necessary conditions for f(y)  to minimize J(f(y))  are: 

(22) Lf(y)-tLf'(y)-0 

:23) L ,   |  + U0 - 0 f'(y) 
y=yo 
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(2*) Lf.(y)   I     + Cgti^-y)  « 0 

y=y 

P   n 

(25) L   I     - T"   "TT " CBni = 0 

y»y m   vl-p 

Here,  equations    (23)     and    (24)     are transversality conditions for the variable 

endpoints and    (25)    is a corner condition on the endpolnt with general variation. 

Now,  using the definition of    L(y  ,  f(y)   ;   f'ty))    we obtain,  as before in 

case  (a), 

(22.1) /    
f'^     « = a(Uo)y + B 

VI + f^y) 

Equation    (23)    has the same  form as    (13.1)     and implies    ß » 0  .    Equation    (2A)   , 

although modified relative to    (14)   ,  again implies    Un  ■ C L    and    adln)     is again 
B 

defined by     (17)   .    Hence the extremal firebreak path  for the interval     [0   ,  y]     is 

given by equation    (18)   . 

The corner condition    (25)     yields 

(26) y = ^- 

giving a determination of the endpoint  (f(y) , y).  However, since p < 1 , 

equation  (26)  does not surely determine a value for y which is less than  I —I . 

But, using  (18)  for the extremal path in the cost function (5) with y 

replacing I—I , the resulting expression is convex in y for any positive N and 

n .  Hence the solution for y may be written 

(27) 

^ or n2 < (aoL^)N 

>^ or n2>(a0L^)N 
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The initial coordinate    x0     for  case   (b)   is determined   (by using    (18)   ,   (27) 

and    (7.1))     to be 

(28) x0 
P . "I,        V = £— sm     (p) + i-[/T7-i] 

ao 

when    n    <   (a0L—JN   ,   otherwise it   is given by equation    (19)   . 

The question remains - does this  solution satisfy the constraints    (4)   . 

Using    (18)     in     (9)   , we obtain 

ao(y -^-) 
G'(y)   = ^ 

v/l -   (aoy)2 

and, since y < y < £- for all y E [0 , y) , G(y)  is strictly decreasing in the 

interval  [0 ; y]  to a zero value at y .  Thus the constraints  (A) are 

satisfied.  Moreover aoy < p < 1 for all y e [0 , y] . 

The general form of the optimal firebreak is illustrated in Figure 10, consisting 

of a circular arc connected to a straight line follow-the-fire-front piece with slope 

/V/TTT        ^ L p/vl - p  , and at y = y < — the rlope  f'(y) may be computed from (18)  and 

(27) to have the same value. Hence the condition  (25)  is in effect a Weierstrass- 

Erdman corner condition [2] , 

Summary for Cases (a) and (b) 

In Case (a) , recall that p  1 and •^ü— < 1 . Hence it follows that 
■        n 

p  1 => n > 
V N 
m 

anL 
n 

< 1 => n > OQL 
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FIGURE 10.    EXTREMAL FIREBREAK     (p   <   1) 

ARBITRARY CORNER    y 
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and 

0      V N 2    T  m 
n  > a0L "T- ' 

f 

Thus, if we regard $    to be a variable for Case (a) as well as Case (b) , we may 

state for both cases that 

0      V N 
p   ...   2    T  n» 
^ if  n  < a0L — 

(29) 9  = 

T 9 V N 

-  if n > aoL-— 
f 

n 

and the optimal  firebreak path  for given     (N  ,  n)     is 

(30)       f(y)   = 

x0+^jl->/l-   (aoy)2j 

XO+^II-N/TT -2) 
p-) + y7T7 

for    0  <  y  < y 

•  y      for    ?  < y < — 

where    p = 

Mn/ 
and 

xo  = ^- sin'Voy)  + -i- |  N/I -  (aoy)2  - 1 j 

(31) 

«0 
'B 

V V N 
m m 

8.     Optimal Number of Construction Groups and Optimal  Crew Size 

For arbitrarily given crew size    N   ,   the total cost under optimal  firebreak 

path depends  upon  the number of construction groups.    Treating    n    continuously. 
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we investigate the cost function K(n ; N)  and seek the optimal number of construc- 

tion groups n* for arbitrary N > 0 . 

The function K(n ; N)  has two forms depending upon whether 

Case  (i) 

Case  (ii) 2 /V\ 
n       \ V 

In  the  first case,  it   follows that, 

(32) K(n ;  N)  = C_ + Cc F S - • S NTW • i •■■-w 
and 

(33) 

for  all 

anL 

_9K 
9n 

2(ao) 

sin t^H^AM^T 
2 IV\ since this inequality  implies    ^^ <  1    when    p  <  1    and ML < 

n 
<  1    for    p  >  1     (see  Case  (a)  above).     Hence    K(n  ;  N)     is  a monotone  increasing 

function of    n    for all    N     in the range 

In  the second  case,   it   follows  that 

2 ,/V
m

N\ 

(34) 

K(n   ;  N)   = Cp + Cg 

CBn 

2(ao)' yrr 
. -i 

=j- -  sin     (p) 



and 
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(35) 
3n 

JB 

2(a0) 
sin     (p)  - ^M2 

2C
R   \VJ 

(1  -  P   ) 
3/2 

(36) 9 K 

)n2      n y/l~ 2( 

2 
CB 1     /Sn\ (1 + 2p2) 

,2 " 2Cn  \V    I ,. 2,2 
an) B   \ m/ (1  -  p  ) 

2 VmN 

for all    0  < n    < agL—r— .     Although (34)     is not monotone,  it  can be shown that, 
f 

o K 9K 9K 
since  p < 1 in this case, —- <  0 whenever — = 0 and — = 0 .  Thus 

3n n=0+ 

over the range In        2    T
VmN\ I 0 < n  < aoL—I the function K(n ; N)  is quasi-concave, 

2     VmN 
Further K(n ; N) is continuous at n = OQL —r—  having a form as illustrated 

f 

in Figure 11, and clearly the optimal number of construction groups (not restricted 

to integers) for given N is 

(37) n* =\/anL 
V N 
m 

Then, except for integer disparity, it follows from (29)  that the optimal fire- 

break path is entirely an arc of a circle. 

Turning now to the optimization of crew size, the cost function K(N)  resulting 

from (37)  is 

CBL 
K(N) = C_ + C -N + — 

F   S    ZCXQ 

aoLV 
11  - 

f 

(38) 
V N 
m 

V N 
m 

'a0L v 
f . -1 sin 

2(ao) 

'aoLVj 

V N 
m 
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K(n  ;  N) 

C L 
'CF + CSN + ^ 

m 

■i   n 

FIGURE 11.    TOTAL COST AS FUNCTION OF NUMBER OF CONSTRUCTION 

GROUPS FOR OPTIMAL FIREBREAK PATH AND ARBITRARY 

CREW SIZE 
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where    ag    depends upon    N    as given by     (17)   .     It is convenient  to make a change 

of variable. 

(39) 1      aoLVl 
Q "    V N 

m 

CBL 

-^ N  +  C  L 
Vf  N  + LBL 

Then the cost  function    K(N)     is written 

K(Q)   = CF + ^- VfCBL(Q - 1) 
m 

(40) 

ifj^-^^w 
where    Q    is a monotone  increasing function of    N    and    1<Q<00    as    0<N<00. 

Further 

(41)        K'(Q)  = -f VfCBL 
m MVJU«-1)3/2        (Q-l)2 V)' 

Evidentl}     K(Q)     has  a minimum for some  finite value    Q0  >  1  ,   since    K(Q)     is 

positive over the range     1  < Q < ^    with    K^Q)  ■* -00    for    Q -^  1    and    K^Q) > 0 

for    Q -♦ ^ . 

Hence,  treating    N     continuously in  the   range    0 < N  < ^   ,   the minimum of 

K(N)     is obtained at  a value 

(42) N0  =  (Q0  -  1)CBL 6) 
and, if the maximum available number of men is N the optimal cn-w size is given by 

N0  if N0 < N 

(43) N* = 

(S N  if  N0 > N 
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With this  optimal value of    N  ,  the optimal number of construction groups    n*    is 

determined  from    (37)    and in turn  the optimal  firebreak path is computed  from 

equations     (29)   ,   (30)   ,  and    (31)   . 

Note  that  this solution always yields a circular arc  firebreak meeting the 

fire front  during construction only at the endpoint    y = — .     But,  if we restrict 

N    and    n    to be  integers such  that    (—j   is an integer,   the optimal firebreak may 

have a terminal straight  line portion following the  fire  front. 

In order to obtain the integral  optimal values  for crew size and number of 

construction groups,  define 

[a]  = largest  integer equal  to or less  than    a 

<a>= smallest  integer equal  to or greater than    a  . 

Then compare  the   following  four costs: 

(i) K l[n*]   ,   [n* N* 
n< 

(ii)       K ([n*]   ,   [n*]   '(S)) 

(iii)     K (<n*> , <n*> N* 
n* 

(iv)       K   (<n*> , <n*> Xf^) 

and select the corresponding integral optimal values for n and N . 

Notice that the following subproblems which may be of interest in themselves 

have also been solved: 

(1) Given N and n , finding an optimal firebreak path. 

(2) Given N , finding the optimal number of construction groups and the 

optimal firebreak path for each. 

(3) Given that N < N , finding the optimal values of N and n as 

well as the optimal path for the firebreaks. 
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It is  interesting to observe that   certain intuitive results  for particular 

cases are obtained by substituting the  relevant values  of the parameters. 

For example,  when    CL = 0    (i.e.,   there are no transportation or "one-shot" 

logistic costs)   and unlimited men are available, we obtain    N* = »  ,  n* = o»  , 

XQ = 0    and the  optimal  firebreak consists of a straight line which  coincides with 

the initial position of  the fire,  recalling that we assumed the time  required to 

get the .clre  fighters distributed along a working line was negligible.    Moreover 

the related optimized total cost  is  finite, being 

C 
C    + L — LF + L  V 

m 

obtained by computing    lim K(Q)     from    (40)   . 
Q-x» 

Next  consider    C    = 0  ,  i.e.,  a situation where fire fighting is done by 
m 

volunteers.  Then, It follows from equations (33)  and  (35)  that n* " 1 for any 

N , and from (AO)  it follows that N* » 1 .  Then from (29) 

if  V > V 
f = m 

and optimal firebreak paths of both types arise depending upon the relative size 

of Vr and V  . 
f       m 

If CD = 0 , it is clear from the structure of the problem that N* = 0 
B 

implying that it is optimal not to fight the fire. 

9.  Stochastic Models and Related Optimization 

So far we have considered only a deterministic model for the study of an 

optimal strategy.  The most significant random variable to be allowed for is the 
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velocity of fire spread V- .  Taking Vf as a nonnegative random variable with 

known probability distribution, it is reasonable on practical grounds to assume a 

finite upper bound on the realized values of this random variable.  Then an optimal 

strategy is one which minimizes expected cost. 

For this extension a multi-stage dynamic programming decision model may be 

used, in which the dispatching of firebreak construction units is done periodically 

based on observed values of the velocity of fire spread at predetermined points 

of time. 

As in the deterministic model, a number of construction groups n  is used 

with an assumption that each one nth of the fire front has the same realized 

value of fire velocity V  at the beginning of any review period. The value of n 

is taken fixed for all periods in order to determine the optimal policy for any 

number of construction groups, and the resulting suboptimized cost function K(n) 

may be minimized to determine the optimal number of construction groups n* . 

For arbitrary n , the optimal policy is a feedback control rule which 

minimizes the total expected cost for an unknown number of periods, in which an 

equal number of men are dispatched to each construction group at the beginning of 

each review period based upon the realized values of fire velocity in all previous 

periods.  In practice the optimal firebreak path during any period is determined 

in accordance with the realized value of fire velocity at the beginning of the 

period, and with the terminal point of the firebreak for the previous period as the 

initial point for the firebreak in the current period.  The policy structure is 

open end. I.e., no fixed number of review period are set in advance, and the 

terminating stage is reached when the men enclose the fire front.  For the extremal 

problem, the main difference relative to the deterministic case is that the vari- 

ational problem has a fixed initial point for all periods except the first.  The 

initial point of the firebreak in the first period is a free endpoint of the 

related variational problem and it is determined by the optimization of cost with 
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respect to n . 

If it arises that the fire front overtakes the fire line, then the  policy 

operates to dispatch additional men to each construction group so as to construct 

a follow-the-fire front firebreak.  This involves a cost of dispatching in addition 

to the operating cost of the extra men, and the optimal policy is determined under 

this rule of dispatching.  Since the transportation cost  Cq is incurred the 

instant a man is sent and the total cost is otherwise a decreasing function of the 

construction group size, it is never optimal to call men back until completion of 

the firebreak. 
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